If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8y^2-32y-10=0
a = 8; b = -32; c = -10;
Δ = b2-4ac
Δ = -322-4·8·(-10)
Δ = 1344
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1344}=\sqrt{64*21}=\sqrt{64}*\sqrt{21}=8\sqrt{21}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-8\sqrt{21}}{2*8}=\frac{32-8\sqrt{21}}{16} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+8\sqrt{21}}{2*8}=\frac{32+8\sqrt{21}}{16} $
| 6.2+5-1.4x=48x+5 | | -3(z-9=-18 | | 6a+2=3a+14 | | 2/8x-7=20 | | 4x+50=7x+40 | | 9m−6m−–4=–2 | | 10x-(4x-8)=5x+2 | | X-39=-3+5x | | 3x+24=8x-11= | | 3|x-1|+2=14 | | 12m=84.12 | | 10=3/w | | 90=(x+12)+5x | | -9=4(b-17)-17 | | -3x-6x=-5+5x | | -7x-3=-2 | | y=250(1.03)^1 | | -7=10-n | | 400+b^2=576 | | 17.5c=15.5+17.5c | | 5^-x=3.4 | | -4t+17t-10t=9 | | 11x+1/3=34/3 | | y=4.000(1.25)^12 | | c–15=2 | | 9t-21=3(t-7) | | 5/4x+6=1 | | 17g-6g-9g=8 | | -16-s=-s-16 | | 3w+4+W=32 | | -7+10+6j=6j+3 | | x^2+3x-10=3x+39 |